ESTUDIO DE CAUSAS QUE GENERAN ABRASION DE FLOR EN CUEROS VACUNOS

Autores: Avallone C., Ruibal J., Temkin R., Chinelato C., Tournier R.

Realizado en: SADESA, Paycueros, Paysandú, Uruguay

- Hay muchas formas de atacar un problema de producción para encontrar la causa que lo originó, o causa raíz.
- En lo que vamos a ver se aplicó determinada metodología que sirve solo como ejemplo y no como un sistema a seguir en cualquier caso.

Indice

- Motivos del Estudio
- Definiciones
- Procedimiento
- Discusión
- Conclusiones
- Recomendaciones

Indice

- Motivos del Estudio
- Definiciones
- Objetivos
- **■** Materiales y Métodos
- **■** Discusión
- **■** Conclusiones
- Recomendaciones

Motivos del Estudio

Aparición de niveles inaceptables de abrasión de flor en la producción.

Aumento de hasta 15% en rechazos por cueros nubucados.

Valoración del defecto.

Indice

- Motivos del Estudio
- Definiciones
- Objetivos
- **■** Materiales y Métodos
- **■** Discusión
- **■** Conclusiones
- Recomendaciones

Definiciones

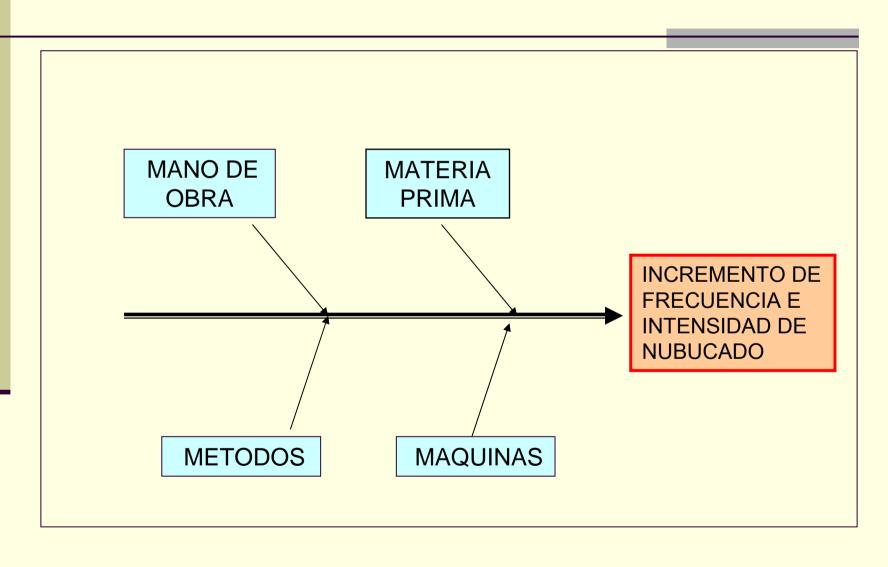
- Abrasión de la flor del cuero (nubucado):
 - Desaparición de primer capa de flor
 - Levantamiento de las fibras
- Diferentes grados
- Dificultades para medirlo

Indice

- **■** Motivos del Estudio
- **■** Definiciones
- Procedimiento
- **■** Discusión
- **■** Conclusiones
- **■** Recomendaciones

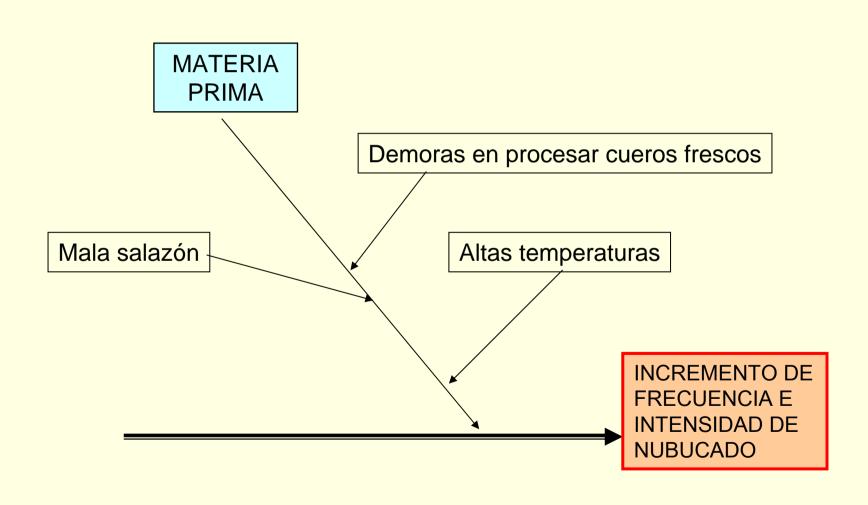
- Definición del problema.
- Recopilación de datos.
- Estudio de las posibles causas.
- Análisis de datos y selección de las causas mas probables.
- Diseño de ensayos para estudiar su incidencia.
- Realización de los ensayos y evaluación.
- Aplicación de los datos obtenidos al diseño.
- Elección de la causa raíz.

- Definición del problema (Incremento de frecuencia e intensidad de nubucado en la producción con respecto a 6 meses atrás)
- Recopilación de datos de trazabilidad
 - Origen de los cueros
 - Datos del proceso de cada partida
 - Incidencia del nubucado en cada partida


 Confección de Diagrama de causa-efecto (Espina de pescado)

Análisis del diagrama en base a la recopilación de datos

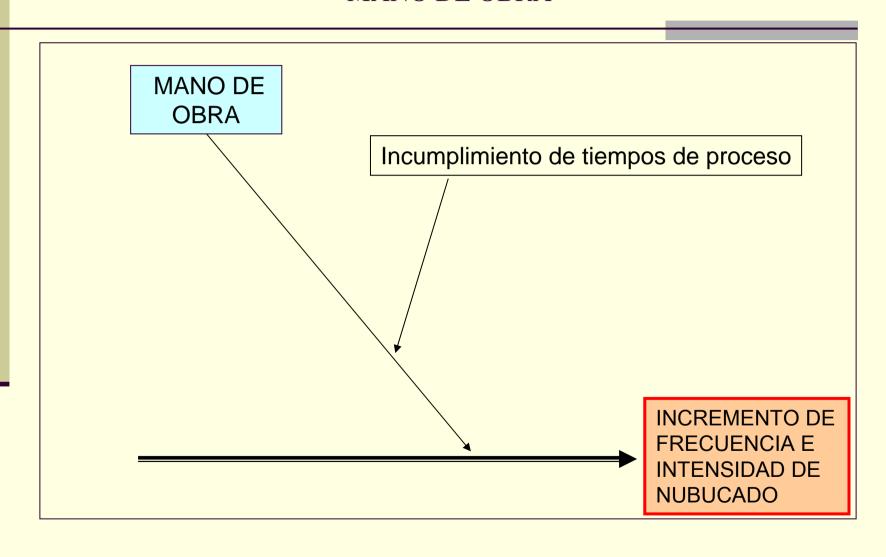
Elección de causas mas probables


DIAGRAMA CAUSA EFECTO (ESPINA DE PESCADO)

GENERAL

DIAGRAMA CAUSA EFECTO (ESPINA DE PESCADO)

MATERIA PRIMA

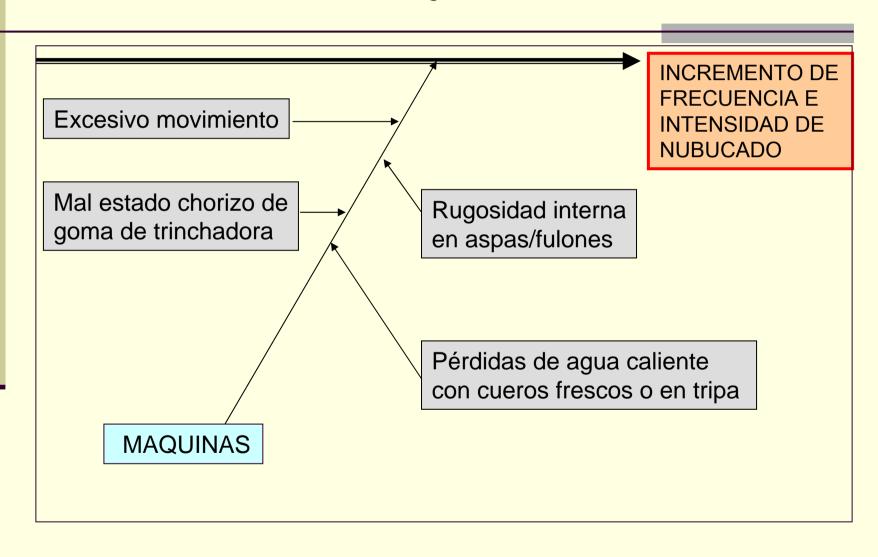


Materia Prima

- Cueros frescos.
- Cueros salados propios.
- Cueros wb de terceros.
- % de incidencia de nubucado en frescos y salados = al mix de producción.
- Baja incidencia en wb de terceros.
- Problema interno en el proceso

DIAGRAMA CAUSA EFECTO (ESPINA DE PESCADO)

MANO DE OBRA

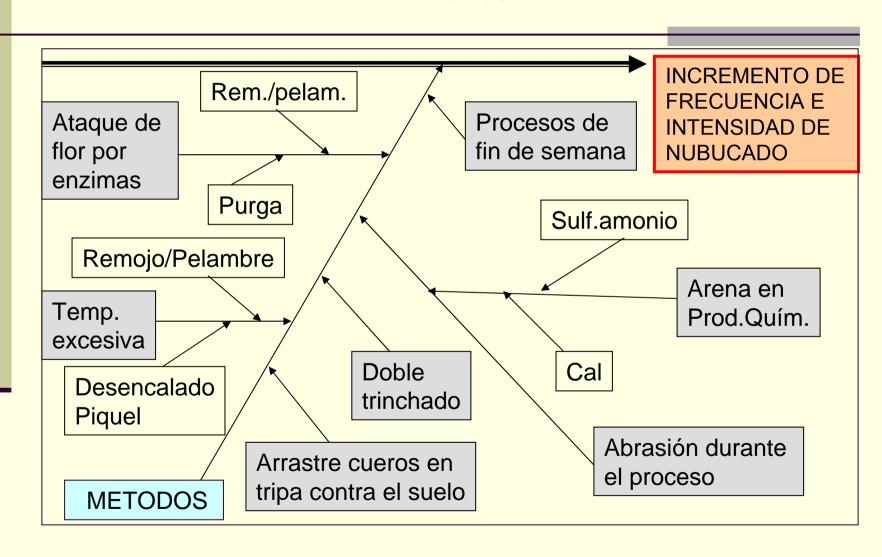

Mano de Obra

No se encontraron irregularidades de significación en los procesos.

No se hicieron cambios en las formulaciones en ese período.

DIAGRAMA CAUSA EFECTO (ESPINA DE PESCADO)

MAQUINAS



Máquinas

- Tiempos de proceso indicaron que el trabajo mecánico no varió en forma significativa.
- Chorizos de goma con desgaste normal.
- Se examinó el interior de todos los recipientes sin encontrar irregularidades.
- No se detectaron pérdidas de agua caliente.

DIAGRAMA CAUSA EFECTO (ESPINA DE PESCADO)

METODOS

Métodos

- Temperaturas dentro de lo establecido.
- Fricción sobre el piso > que 6 meses atrás pero sobre patas, faldas y barrigas.
- Procesos de fin de semana no hay.
- Doble trinchado en cueros para tapicería presenta mayor incidencia.
- Enzimas, presentan riesgo.
- Partículas abrasivas otro factor de riesgo.

Causas mas probables

Doble trinchado

Partículas abrasivas en la cal

Efecto de las enzimas

Diseño de ensayos para estudiar su incidencia.

Elección de la causa raíz.

- Elección de variables o factores.
- Elegir dos niveles para cada variable, alto y bajo.
- Variar los niveles de un factor manteniendo los otros constantes.
- Evaluar las respuestas a esas variaciones.

- Factor Trinchado
 - Nivel alto: doble trinchado
 - Nivel bajo: trinchado en pelo solamente
- Factor Cal
 - Nivel alto: 3,8% de insolubles
 - Nivel bajo: 0,6% de insolubles
- Factor Enzima
 - Nivel alto: 0,15% en remojo
 - Nivel bajo: sin enzima

Diseño de ensayos (Corridas)

CUADRO DE CORRIDAS Y RESPUESTAS							
No. DE	No. DE	CAL	ENZIMA	TRINCHADO	RESPUESTAS		
CORRIDA	CORRIDA			EN TRIPA			
ORDENADA	ESTANDAR						
AL AZAR							
8	1	SUPER FINA	0.15 %	CON TRINCHADO			
7	2	SUPER FINA	0.15 %	SIN TRINCHADO			
1	3	SUPER FINA	SIN ENZIMA	CON TRINCHADO			
5	4	SUPER FINA	SIN ENZIMA	SIN TRINCHADO			
2	5	NORMAL	0.15 %	CON TRINCHADO			
3	6	NORMAL	0.15 %	SIN TRINCHADO			
6	7	NORMAL	SIN ENZIMA	CON TRINCHADO			
4	8	NORMAL	SIN ENZIMA	SIN TRINCHADO			

Diseño de ensayos (corridas)

- Realizar las corridas al azar.
- Misma materia prima (1 pila c/saldos abierta en 8 cargas de pelambre).
- Se usó siempre la misma aspa para remojo pelambre y el mismo fulon para curtido.
- Se marcaron todos los cueros con código.
- Una vez los ocho lotes en wb se sacaron cueros de c/u para confeccionar un lotes de recurtido/teñido.

- Una vez en Semi terminado los cueros se evaluaron a ciegas.
- Referencias de grado de nubucado Mal, Regular y Bien.
- Se asignó un puntaje arbitrario a cada grado.
- Dos evaluadores en forma independiente evaluaron la partida cuero por cuero.
- Los valores se llevaron al cuadro de corridas.

CUADRO DE CORRIDAS Y RESPUESTAS							
No. DE	No. DE	CAL	ENZIMA	TRINCHADO	RESPUESTAS		
CORRIDA	CORRIDA			EN TRIPA			
ORDENADA	ESTANDAR						
AL AZAR							
8	1	SUPER FINA	0.15 %	CON TRINCHADO	72		
7	2	SUPER FINA	0.15 %	SIN TRINCHADO	63		
1	3	SUPER FINA	SIN ENZIMA	CON TRINCHADO	52		
5	4	SUPER FINA	SIN ENZIMA	SIN TRINCHADO	57		
2	5	NORMAL	0.15 %	CON TRINCHADO	76		
3	6	NORMAL	0.15 %	SIN TRINCHADO	75		
6	7	NORMAL	SIN ENZIMA	CON TRINCHADO	80		
4	8	NORMAL	SIN ENZIMA	SIN TRINCHADO	68		

TABLA DE RESPUESTAS Y EFECTOS								
No.de	No. de	Respuesta	CAL		ENZIMAS		TRINCHADO	
corrida	corrida							
ordenada	estándar							
al azar			Fina	Normal	Con	Sin	Con	Sin
8	1	72	72		72		72	
7	2	63	63		63			63
1	3	52	52			52	52	
5	4	57	57			57		57
2	5	76		76	76		76	
3	6	75		75	75			75
6	7	80		80		80	80	
4	8	68		68		68		68
TOTAL		543	244	299	286	257	280	263
No. DE VALORES		8	4	4	4	4	4	4
PROMEDIOS		67,8	61	74,7	71,5	64,2	70	65,7
EFECTO				13,7	7,3		4,3	

Indice

- Motivos del Estudio
- **■** Definiciones
- Objetivos
- **■** Materiales y Métodos
- Conclusiones
- **■** Recomendaciones

Conclusiones

- Los tres factores estudiados generan cierto grado de nubucado
- Los insolubles de la cal, en la proporción presente en la cal "normal" de ese momento fueron los causantes del problema.
- El doble trinchado colaboró.
- No hay que menospreciar el efecto de las enzimas.

Recomendaciones

- Establecer especificaciones para la cal.
- Realizar análisis periódico de la cal que ingresa.
- Regular adecuadamente la cantidad de enzimas a usar.
- Tener cuidado en % de baños, cantidad de movimiento, estado de los recipientes, etc. en los procesos húmedos.